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A computer architecture
for smalil-batch manufacturing

Industry will profit from a system that defines the functions of its
component-manufacturing modules and standardizes their interfaces

The advent of fully automated, in-
tegrated small-batch manufacturing
control systems has been slowed by
several problems: the systems are
complex, their development is costly,
and the technology is not yet mature.
But even more of a hindrance has
been the lack of a standard manufac-
turing systems architecture. A stan-
dard architecture reduces the overall
system complexity by focusing on one subsystem at a time, defin-
ing component modules and their interfaces. Such an architec-
ture would allow users to build systems in increments and to buy
the increments from competing vendors. Such a scheme is under
study at a National Bureau of Standards (NBS) facility in
Gaithersburg, Md.

Standardization will require agreement among many com-
panies; no single one can establish industrywide standards. Some
of these standards could flow from existing benchmarks, such as
the IEEE 802 local-area-network standards. The NBS research
under way in Gaithersburg is seeking to identify potential stan-
dard interfaces between existing and future components of auto-
mated small-batch manufacturing systems, in particular for
systems that produce machined parts in lot sizes of 1000 or less.
The project, funded by the NBS and the Navy Manufacturing
Technology Program, will also develop measurement techniques
and standard reference materials for users.

Beginning in 1981, a 5000-square-foot area of the NBS ma-
chine shop was set aside for the construction of an Automated
Manufacturing Research Facility, a flexible manufacturing test
bed. The facility is to become operational by 1986, and the test
bed will be made available for selected research by academia, in-
dustry, research institutions, and Government agencies. Com-
mercially available products are being used to construct the sys-
tem wherever possible to expedite the transfer of research results
to the private sector. Industry is supporting a significant portion
of this research through donations and the lending of component
systems and through cooperative research programs.

The NBS approach to integrating a manufacturing control sys-
tem parallels that which the agency used in developing the Initial
Graphics Exchange Specification (IGES), a project of the U.S.
Air Force Integrated Computer-Aided Manufacturing (ICAM)
Program and one of the first to integrate the interfaces between
commercial computer-aided design and computer-aided manu-
facturing {see ‘‘Our computers aren’t speaking,’”’ R.K. Jurgen,
September 1982, p. 62]. IGES, now an ANSI standard
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(Y14.26M), is a communication file structure for the interactive
design and drafting systems of different manufacturers. Each
participating manufacturer supplies processors that enable the
manufacturer’s system to ‘‘talk’’ with the communication file.
The manufacturer’s system can then communicate with that of
any other vendor conforming to the IGES specification. The ini-
tial standard, which covered wire-frame graphics construction,
has recently been expanded to Version 2.0, which includes
geometric solids, plane figures, curved surfaces, finite element
modeling data, and printed-circuit-board data,

In its first attempt at developing a control system for
automated small-batch manufacturing plants, the NBS is trying
to maintain the same flexibility presented by the IGES. The goal
is to allow users to buy equipment from different vendors while
minimizing the manufacturing constraints on the vendors, so
competition can remain healthy and equipment can be updated.
The NBS architecture will undoubtedly undergo changes as
research progresses, but it does offer a starting point for develop-
ing the standard interfaces for component modules.

Four major component technologies are involved in the ar-
chitecture proposed for the test bed: manufacturing systems con-
trol, distributed data administration, communications systems,
and user interfaces.

I. Manufacturing systems control

The architecture of the control systems themselves is the single
most important standard that must be established. The tech-
niques selected have been derived from early NBS research in
real-time sensory interactive control of robots. Hierarchical con-
trol, hierarchical scheduling, state machines, control cycles, and
planning horizons will be used.

With this approach, the control modules are arranged in a
hierarchy. Each controller takes commands from only one
higher-level system, but it may direct several others at the next
lower level. Long-range tasks enter the system at the highest level
and are broken down into subtasks, to be executed as procedures
at that level or put out as commands to the next lower level.

The behavior of a manufacturing system must be adaptive and
deterministic; hence the control structure will be a hierarchy of
feedback controllers implemented as state machines. All inputs,
outputs, states, and state transitions of each subsystem in the
batch manufacturing process are identified in state graphs, used
to develop state tables, which are processed by the control
system. A time interval, called a control cycle, is defined for each
control subsystem, to determine how often a table is processed.
Processing a state table involves sampling state variables,
locating the current state in the table, and then executing the pro-
cedures and generating the outputs associated with the current
state. The control cycle at each level must be short enough to
maintain system stability—that is, each processor must identify
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the current state and generate appropriate outputs before the
behavior of the system deviates from acceptable ranges.

The amount of time any control system sets aside to handle its
tasks is defined as its planning horizon. Systems do not know
about events or activities that occur beyond their planning
horizon. By defining shorter and shorter planning horizons at
each successively lower control level, the architecture keeps the
processing capacity during each control cycle to a minimum. This
hierarchical scheduling at the NBS will be implemented with the
planning horizon concept. Control systems at each level will be
free to make the sequencing decision within boundaries estab-
lished by higher levels.

Analysis of nonautomated batch manufacturing systems has
led to the design of a test-bed control hierarchy that is composed
of five major levels: facility, shop, cell, work station, and equip-
ment [Fig. 1]. Each level has one or more controls that are fur-
ther broken down into sublevels or modules.

Facility—This highest level of control comprises three major
subsystems: manufacturing engineering, information manage-
ment, and production management. Manufacturing engineering
provides user interfaces for the computer-aided design of parts,
tools, and fixtures, as well as for the planning of production pro-
cesses. Information management provides interfaces and sup-
ports the administrative functions of cost and inventory account-
ing, the handling of customer orders, and procurement. Produc-
tion management tracks major projects, generates long-range
schedules, and identifies production resource requirements and
excess production capacity. The production planning data gener-

ated at this level is used to direct the shop control system at the
next lower level.

Shop—This level is responsible for the real-time management
of jobs and resources on the shop floor through two major
modules: task management and resource management. The first
schedules job orders, equipment maintenance, and shop support
services. The latter allocates work stations, storage buffers,
tools, and materials to cell-level control systems and to particular
production jobs. The shop system classifies parts and defines
parts families, using part-processing requirements, geometric
shapes, tools used, production costs, and the composition of
materials. The shop controller creates virtual manufacturing cells
at the next lower level to manage the production of parts that
have been batched according to this scheme. The shop removes
virtual cells from the control structure when their assigned tasks
are completed. .

Cell—Controllers at this level manage the sequencing of batch
jobs of similar parts or subassemblies, such as materials handling
or calibration. The cell brings some of the efficiency of a flow
shop to small-batch production by using a set of machine tools
and shared job setups to produce a family of similar parts. The
cells are “*virtual” cells—dynamic production-control structures
that permit the timesharing of work-station processing systems.
The software structure was named the “‘virtual” cell to dis-
tinguish it from previous manufacturing cells, which are defined
by fixed groupings of equipment or machinery on the shop floor.
Modules within the cell control the performance of system tasks,
analyze availability of resources, report on job progress, route
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[1] The National Bureau of Standards’ Automated Manufactur-
ing Research Facility has five levels of command: facility, shop,
cell, work station, and equipment. The control hierarchy is
depicted in the black boxes, with black lines showing the flow of
activity from the facility level at the top to specific pieces of
equipment at the bottom. Each function box, be it a machine
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shop, milling work station, or robot, has its own set of con-
trollers for its internal control processes. All the function boxes
communicate along a facility broadcast system (blue lines)
through communication nodes. A view of the actual milling
work station, shown in purple in the above control hierarchy, ap-
pears in Fig. 2.
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batches, schedule activity, requisition resources, and keep track
of tasks being done at work stations. .

Work station—This level directs and coordinates the group-
ings of equipment on the shop floor. A typical test-bed work sta-
tion consists of a robot, a machine tool, a material storage buf-
fer, and a control computer [Fig. 2]. It processes trays of parts
that have been delivered by the materials-transport system. The
controller sequences the equipment through job setup, parts fix-
turing, cutting processes, chip removal, in-process inspection,
and job take-down and cleanup operations. The interface be-
tween a cell and a work station will be standardized.

Equipment—These controllers are tied directly to all
automnated pieces of equipment on the shop floor, be they robots,
numerically controlled machine tools, coordinate-measuring
machines, delivery systems, or various storage-retrieval devices.
These systems perform the basic low-level functions of materials
storage, transportation, handling, materials processing, clean-
ing, and inspection.

Adding intelligence to controf

With conventional manufacturing systems, management fur-
nishes the expertise and intuition to adapt the system to new in-
dustrial procedures and work loads. Automated systems soft-
ware must do its own adapting by acquiring the ability to plan
and to handle unpredictable events, faults, or crises. It must learn
from each experience. This calls for artificial intelligence (Al)—a
major step in the evolution of automated manufacturing control
systems.

The behavior of intelligent manufacturing-control modules at
NBS is divided into five classes: reaction, planning, optimiza-
tion, learning, and self-organization. Any control system may
eventually combine features from all behavioral classes, but the
initial controllers will concentrate on reaction and planning.

Reaction provides primitive behavior (sense, lookup, re-
sponse) and is central to the state machine architecture. Planning
incorporates the capability to predict possible future states of the
system and its external environment and to generate outpuis to
drive the system to the goal. With optimization, alternative solu-
tions are simulated to evaluate the sensitivity of each potential
solution to influences in the environment. The best path to the
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T robot (center) highlights
the NBS's milling work sta-
tion (drawn in purple in
Fig. 1). Once a robot cart
has delivered trays of parts
(left, on table), the
T’selects appropriate parts
to be milled and places
them on the bed of a
Monarch vertical miiling
machine (right). The entire
process is coordinated by
computer controllers and a
data-administration sys-
tem, as shown in Fig. 3.

goal is then selected from an evaluation of simulation results.

Learning incorporates a capability in the system to modify its
knowledge base. The learning process requires that the system
recognize significant experiences, data, or generated plans and
incorporate this new information into the control structure, Seif-
organization requires that a system be aware of its internal
organization and be capable of reorganizing processing struc-
tures and knowledge bases to modify its behavior.

Intelligent manufacturing-control systems require knowledge
bases that comprise data about current tasks, production pro-
cedures, and the work environment. Al researchers have broken
down a typical knowledge base into three types of knowledge.
Quiescent knowledge is general patterns, facts, and strategies
relating to a particular problem. Active-problem knowledge in-
cludes relevant rules and assertions that apply to the problem at
hand. Metaknowledge comprises rules for acquiring knowledge
and focusing attention during problem solving.

As manufacturing control systems evolve into distributed ar-
chitectures of independently constructed expert systems, new in-
terface standardization problems will inevitably arise. Issues that
must be addressed include the structuring of knowledge bases to
facilitate knowledge sharing between systems; the limiting of
knowledge in any one system; the definition of interface
languages to permit communication among experts for dis-
tributed planning and problem solving; and the editing and
maintenance of individual knowledge bases by external systems,
If these problems can be solved, it is likely that systems vendors
will develop controllers with local intelligence and interfaces that
can be integrated into distributed manufacturing planning and
control environments.

11, Distributed data administration

For control systems to share information, there must be a stan-
dard interface to data bases. Because of the multivendor ar-
chitecture and differences in the requirements for data manipula-
tion, the distributed data-administration architecture of the NBS
test bed will comprise multiple data-base management systems.
A standard interface is required.

The proposed interface is made up of a data-definition
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[3] Each function box in Fig. 1 (like the milling work station
shown in purple in Fig. 1 and illustrated in Fig. 2) involves one
or more processes. The control scheme and its interfaces for one
of these processes are shown here. Each process is, in turn,
composed- of @ number of manufacturing processes that
operate through a common data-administration system (DAS).
A generic DAS is shawn, as are five manufacturing control pro-
cesses coordinated by controllers CPI-S. Each CP talks to the

language to define data structures and schemes for the data dic-
tionary and a data-manipulation language to access and modify
data bases. The syntax of the common data-management
language will follow that of the ANSI X3H2 committee’s base-
line document for the relational data-base model. Statements in
the standard language will be translated into the data-base
management system language by an interpreter module.

As for the distribution of functions and data in a data-base
management system, the requirements depend on the level of
control. In general, the volume of data is larger and the accept-
able response times longer at higher levels of control. The
response time for data delivery at a control level is a function of
the control cycle and the priority of operations within the cycle.
Some levels need very high rates of data access and modification,
implying that the data bases should be in the computer memory
rather than stored peripherally.

The basic organizational elements of the data bases are as fol-
lows: (1) a field is the smallest unit of information; (2) a record is
the unit of data delivery, a group of logically related fields; (3)a
relation is a record of a group of loglcally related records; and (4)
a data set is the unit of allocation, or groups of records or rela-
tions stored in a single data-management system.

Controllers retrieve and modify logical views—data structured
to meet the needs of the particular module. These logical views
are relations whose objects and attributes may coincide directly
with the fields of a physical record or be subsets of a physical

62

DAS through the interchange mailboxes, which act as
translators between the various CP languages and the standard
DAS language. Communication between these parts (il-
lustrated by arrows) is done either along a local data path, {f
this was only one of several control processes within a function
box in Fig. 1, or along the overall facility broadcast system, if it
was the only control process in the box, in order to com-
municate with other boxes.

record. They may also be an amalgam of fields from several
physical records.

Organizing the data system

A typical data-administration system [Fig. 3] is composed of a
data dictionary and directory system and a data-base manage-
ment system. The latter may be broken down into a logical view
processor and a physical data-management system. Both the user
and the vendor provide translators to communicate with the
data-base system.

A distributed architecture demands that a data dictionary and
directory system exist at each communications node to index and
define the data sets that reside at that node. Data include the
translation of logical names associated with data structures and
elements and the definition of physical structures or schemes in
terms of the local data-base management system.

The information in the dictionary and directory system is dy-
namic, in that data sets are created and deleted while the test bed
is operating. In addition, a common conceptuat model of the en-
tire data-base complex must be maintained at some central loca-
tion. The central model contains information on the distribution
and the logical structure of the data sets, as well as the relation-
ships between records in the data sets that span multiple nodes or
are replicated at them.

A language transiator is required at each node. It must be ac-
cessible from the local control programs and from other control
programs in the network. The translator uses the local data direc-
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tory to determine whether a request can be satisfied from resident
data bases; if it can, the query is translated and transmitted to the
local data-base management system. If the data are not locally
resident, the query is passed via the communications system to
corresponding data-administration processes at other nodes or to
transform processors.

These systems provide the core of the data management. Each
system accesses data through its logical view processor. The
physical data manager does the actual allocation, storage, and
retrieval transactions on the storage media.

Data-transform processors in these systems resolve data in-
compatibilities between the control modules of different vendors
and perforrn complex data manipulations involving the data-
base management systems in multiple computers. When ne
system can by itself construct a requested logical view, a trans-
form processor is required.

Transform processors will be activated and connected between
data-administration systems by the communications systems.
The instructions for accomplishing complex data manipulations
will be defined in the data dictionary module on the node of the
requesting data adminstration system or in the common concep-
tual data model.

Hi. Communications systems

For information to be transferred betwesn control processes
standards for communication are desirable. Four ideas motivate
the NBS communications architecture: (1) the distribution of
logical control processes and their related data bases over a net-
work of different computer systems; (2) communication

mechanisms that satisfy the performance requirements of the
control systems; (3) the transparency of the actual mechanisms
used for communications between the control processors; and (4)
a common comsnunications and computer-process management
language that simplifies distributed system development.

If control levels are distributed over multiple computers con-
nected in a common network, individual systems can be small
and tailored to the tasks at their level. There might be several
communications systems in a plant, each dedicated to different
levels of production. A handful of commercial vendors have
begun producing such systems, Distributing controls also permits
placement of control computers near the sensor-servo devices
with which they interact, thus overcoming the problem of at-
tenuation of control signals on long links. Interchanges between
control processes in [ess than { second are feasible only when the
information is transferred through 3 common data path within
the computer (such as a common memory), rather than through
an external network. This necessitates packaging control pro-
cesses with high interaction rates on one computer system,
although not necessarily on a single processor.

High levels of manufacturing-control software are rarely con-
nected directly to any physical device, and typically they have
longer reaction times than the lower levels. Consequently there
are options for the assignment of these processes to processors in
the distributed system, and these options can be exercised to ob-
tain backup and recovery capabilities. Thus the control system
consists mostly of minicomputers and microcomputers con-
nected by a common network with muitiple software-control
processes on each computer system.
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[4] The computing system at a typical communications node ly-
ing on the facility broadcast network includes communications
control, program control, and data administration. If this
represented node no. 6in Fig. 1, for example, then manufactur-
ing control process 1 (brown) would correspond to the con-
trollers in the robot function box, manufacturing control pro-
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cess 2 (green) to the robot cart, manufacturing control process 3
(vellow) to the conveyor, and manufacturing control process N
to work station N. The control process in Fig. 3 is shown in red
here. Note that N number of manufacturing control processes
can be linked in a communications node and that this occurs at
all nodes, not just node no. 6 as used in this example.
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There is no reason for most control programs to know where
other programs with which they communicate actually reside.
Consequently the software interface between two control pro-
cesses should not depend on where they are located. There will be
one software interface to the communications complex, which
services both network and local interprocess communications.
Programs open communication paths (called mailboxes) by
name, and the underlying software (the mailbox manager)
resolves names into actual addresses and the appropiiate com-
munications mechanism. Consequently control programs are
isolated from one another and communicate only by placing
agreed-upon messages in standard interchange mailboxes. Any
control module that does not directly connect to an external
device can be moved to another processor.

A common language is necessary for communication between
communications systems and the local computer operating sys-
tem. The communications language is a common medium for
naming, opening, reading, writing, and closing logical com-
munications channels. The process-management command
language supplies common terminology and syntax for naming,
creating, moving, suspending, interconnecting, setting priorities,
and performing other computer process-management functions.

A common network permits communication between pro-
cesses executing on separate systems and for access to nonresi-
dent data bases. The most flexible network architecture is a
broadcast network, in which every system is physically connected
to a single transmission medium but is logically connected only to
those systems with which interchange is required. Broadcast net-
works are robust; they can function with any number of systems,
and their cost is incremental, roughly proportional to the number
of connected systems. There are several emerging technologies
for broadcast networks, and it would be unwise to attempt to
standardize a particular technology at this time. To avoid
dependence on any one network or computer systems combina-
tion and to ensure selection of systems on the basis of best match
to tasks, a facility network should terminate in nodes provided
by the network vendor, with standard interfaces to the computer
systems, Among the candidates for this interface standard, the
EIA RS422/449 and IEEE 488 are readily available and likely to
be fast enough and reliable enough for the short links involved.

Communications between processes residing on the same com-
puter system has to be tailored to the common local data paths of
the systemn at hand. On some systems shared memory access is an
obvious choice. On others the operating system lets programs
communicate. Finally, there is the option of shared access to a
data set on secondary storage media.

A communications node is normally associated with a single
computer system, which may have muitiple processors. A node
supports a group of logically related processes {Fig. 4]. Among
the functions of these processes are manufacturing control, data
administration, data transforming (not illustrated), and program
and communications control. These processes interface within
the node through their logical names, standard interchange
mailboxes, and the common local data path.

The first two functions, manufacturing control and data ad-
ministration, have been discussed. As for program control, it
permits operators and higher-level control programs to start and
stop processes on the node, as needed, through the process
management command language. The program-control server
uses standard interchange mailboxes and translates the common
language into the operations required on the host computer oper-
ating system. Unlike the setup on most other processes, the loca-
tion of the program control server is significant, and although for
consistenoy it is accessed by name, its name must reflect its
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physical location, since its function is to give access to the process

_ management operations of the local operating system.

The mailbox manager creates and removes communications
paths to other processes (mailboxes). Control processes com-
municate with the mailbox manager via a common language and
standard interchange mailboxes, which are created automatically
for each process when it starts. The manager also supervises the
transportation of messages between mailboxes, using local or
network data paths.

V. User interfaces

To maintain a distributed computing architecture for small-
batch manufacturing plants, systems interfaces are required for
operators, programmers, maintenance technicians, and data.
entry and management personnel. Previous interfaces with com-
plex systems have often overwhelmed users. Simple graphics and
menu-based and English-like interfaces are needed before inex-
perienced users can operate automated manufacturing systems.
These interfaces will require considerable development effort
and shouid not be rebuilt for each control system.

Human-factors research has indicated that the average
operator can grasp only seven (plus or minus two) different
pieces of information at one time and that graphic data is more
readily comprehended than text or tables. The design of displays
and interactive devices should take into account the tasks at
hand, human limitations, and personal preferences.

Pictorial manufacturing symbols will be developed at NBS to
represent the status of systems and objects in the facility. These
symbols will be designed for ease of use, operator recognition,
and minimal computational requirements. The interface will per-
mit users to ‘‘teach’’ control systems graphically how to perform
new tasks.

The graphics interfaces will be connected to the manufacturing
system via the data-management and -communications systems,
rather than directly to individual controllers. This will permit
parallel execution of a graphics program while control processing
is taking place. Input devices will include function switches,
dials, tablets, and light pens.

Manufacturers have developed an informal language to de-
scribe the activities and objects of their world, but the language is
too imprecise to be used in automated applications. An English-
like production-control language (PCL) is being developed for
the NBS test bed to create interfaces at each functional level and
for each applications area. Action verbs, modifiers, data objects,
and statement syntax are being defined. The terminology of the
manufacturing world is being used wherever possible.
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